Electron-phonon interactions for optical-phonon modes in few-layer graphene: First-principles calculations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phonon anharmonicity of rutile SnO2 studied by Raman spectrometry and first principles calculations of the kinematics of phonon-phonon interactions

Raman spectra of rutile tin dioxide (SnO2) were measured at temperatures from 83 to 873 K. The pure anharmonicity from phonon-phonon interactions was found to be large and comparable to the quasiharmonicity. First-principles calculations of phonon dispersions were used to assess the kinematics of three-phonon and four-phonon processes. These kinematics were used to generate Raman peak widths an...

متن کامل

Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene.

Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=...

متن کامل

First-principles calculations on the effect of doping and biaxial tensile strain on electron-phonon coupling in graphene.

Graphene has exhibited a wealth of fascinating properties, but is also known not to be a superconductor. Remarkably, we show that graphene can be made a conventional Bardeen-Cooper-Schrieffer superconductor by the combined effect of charge doping and tensile strain. While the effect of doping obviously enlarges the Fermi surface, the effect of strain profoundly increases the electron-phonon cou...

متن کامل

Controlling electron-phonon interactions in graphene at ultrahigh carrier densities.

We report on the temperature dependent electron transport in graphene at different carrier densities n. Employing an electrolytic gate, we demonstrate that n can be adjusted up to 4 × 10(14)  cm(-2) for both electrons and holes. The measured sample resistivity ρ increases linearly with temperature T in the high temperature limit, indicating that a quasiclassical phonon distribution is responsib...

متن کامل

Electron and optical phonon temperatures in electrically biased graphene.

We examine the intrinsic energy dissipation steps in electrically biased graphene channels. By combining in-situ measurements of the spontaneous optical emission with a Raman spectroscopy study of the graphene sample under conditions of current flow, we obtain independent information on the energy distribution of the electrons and phonons. The electrons and holes contributing to light emission ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2009

ISSN: 1098-0121,1550-235X

DOI: 10.1103/physrevb.79.115443